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Analysis of the low-pressure low-current dc positive column in neon
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A time-dependent, nonstatistical analysis of the positive column in low-pressure neon is presented. The
analysis is based on the elliptic representation of the Boltzmann equation and so is tolerant of large degrees of
anisotropy. A self-consistent absorbing wall boundary condition is described, along with a time-dependent form
of Poisson’s equation. The equations are cast in a form that lends itself to a numerical implementation based on
a well established low phase-error monotonic method. An instability with short time scale is predicted near the
wall, and is analyzed. A scaling law for the various anisotropic components in the nonlocal regime is derived,
and a critical analysis of the nonlocal electron kinetic method is presented.
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I. INTRODUCTION absorbing-wall boundary condition that has validity for all
degrees of anisotropy4) a time-dependent representation of
Despite its long history, the low-pressure positive columnPoisson’s equation, which is well suited for monotonic meth-
continues to be the subject of much theoretical analysi®ds; and(5) inclusion of the effects of neutral gas heating.
[1-5]. Owing to the increasing availability of computational
power, and to the inapplicability of various simplifying as-
sumptions under low-pressure and low-current conditions,
these models have become increasingly sophisticated. Although the positive column of the low-pressure glow
The concern of these more recent models is that at suffidischarge has been observed experimentally for over 140
ciently low pressures and low currents, the electron velocityears[7—9] its theoretical investigation has lagged somewhat
distribution function(EVDF) is not accurately described by a behind experiment and commercial application. The first
singly parametrized function, be it Maxwellian or otherwise. published model of any significance was by Schoftk] in
Rather, it must be determined with both energy and space924, followed thereafter by the more general treatment by
resolution. For any reasonable accuracy, a solution requiresTnks and Langmuif11]. Various refinements of this class
significant amount of computation. Furthermore, the relevangf model followed[12—14, yet all relied on the assumption
time scales involved range from the time required for thethat electrons exhibit a Maxwellian distribution, with a radi-
fastest electrons in the simulation to cross a computationallly uniform temperature. Furthermore, the relation between
cell (of the order of 1 psto the time scale for thermal relax- electron temperature and ionization rate was left unspecified,
ation of the neutral host gdgypically 100 us). This dispar-  and the radial transport of electron energy was not included.
ity makes the system quite stiff and, hence, computationally Radial flow of electron energy was eventually found to be
challenging. a necessary component of models, especially at lower pres-
At the highest energies of interest, and at absorbingure. A nice presentation of the evolution of these ideas is
boundaries, the distribution function will exhibit high angu- given by Ingold[15]. Notwithstanding these refinements,
lar anisotropy. This anisotropy can be so great as to rendghese models rely on a fluid or moment description of elec-
the two-term spherical harmonic expansion invalid in thoserons, in which they are assumed to have a known, though
regions. As it is impossible to determirepriori which re-  possibly parametrized, distribution function.
gions of phase space will be in violation without risking @ As an intermediate step between such moment models
compromised solution, a robust representation of the Boltzand an energy-resolved Boltzmann solution, the nonlocal
mann equation is needed in order to smoothly transit talectron kinetic(NEK) approach[5,16—1§ has recently
higher degrees of anisotropy when and where they occur. been applied to the positive column. However, as the follow-
The primary purpose of the present work is to cast theng analysis shows, there is some reason to doubt the validity
Boltzmann equation, and other transport equations needest this method.
for a description of the positive column, in such a manner The NEK method is considered to be applicable when
that a robust, self-consistent solution can be obtained by theibe radiusR is much smaller than the energy relaxation
use of a well-established time-dependent numerical techdistance for elastic collisions,r. The isotropic component
nique of known accuracy and stability. The particularly novelof the distribution functionf,, is expanded as follows:
features of the present work afg) an implementation of the
elliptic representation of the Boltzmann equation as it applies
to I?he p(?sitive columr6]; (2) a time—degendent solutir())%, fo(e,@)=fo(e) +fo(e.e) +f5(e.e) +fo(@.e)+ -+,
resolved in energy, utilizing a monotonic methd®) an 1)

II. BACKGROUND

wherep is the dimensionless radial position coordinate and
*Email address: richley@mailaps.org ¢ is the dimensionless “total” energy coordinate. According
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to the procedure, spatial averaging is used to obt§irand Eulerian continuum approaches avoid these difficulties.
each successive term is obtained by a perturbation methodThese are often based on the two-term spherical harmonic

In order to analyze the validity of this method, a simple expansior3,4] in steady state form. These tend to describe
case will be considered. In this case, cylindrical geometry ishe EVDF well, but have difficulty in regions where anisot-
chosen, and the radial potential is assumed to have a pareopy is large and where the two-term expansion is, therefore,
bolic profile. Only those electrons that are “trapped” with invalid. However, the choice of a particular closure to that
energy less than the wall potential will be treated, and ionexpansion forms the elliptic representati@j that does not
ization is ignored in this example. A constant mean free patlyyffer from such a limited range of validity. Furthermore,
for elastic collisions is assumed. These conditiqns yield &ynamic effects can be included by seeking a time-dependent
particularly simple form of the Boltzmann equation, and agsg|ytion to the Boltzmann equation. The elliptic representa-
particularly simple form for each of the terms in the expan-ion, in time-dependent form, is the basis for the present
sion. Details are provided elsewh¢fé®], with the result that \york.

each term can be represented as a product of a polynomial, The time-dependent elliptic representation fits into the

Pn(@,€), and an exponential: general form of time-dependent transport equations, for
) which numerical solution techniques are well established
0=B"pn(e,e)e ", (2)  [23]. Although such equations are generally used in the treat-

ment of reactive flow[24], their computational domain is
where B8 is a dimensionless ratio, presumed to be mucteasily extended to include both space and energy dimensions

smaller than unity, defined by as is needed for the energy-resolved description of electrons.
The heavy particle§ions and neutral gasre treated as flu-
E)x-/ R\2 ids in the conventional sengspace only. The components
= iT<—) (3)  of the electric field can also be represented in this form.
4y \ N1 Thus, one uniform solution technique can be used to describe

the evolution of all quantities.
whereE, is the axial field andp,, is the wall potential. It is A method based on flux-corrected transp®CT) [23] is
the factor of 8" which is presumed to cause convergence ofused for the solution, with the multidimensional extension of

the series. However, it is necessary to consider the magnitudéalesak{25] providing the framework for the quantities de-
of p,, with the polynomial given by fined on phase space. Convection terms are evaluated using

FCT, while the “source” terms representing body forces,
n n pressure gradients, collisions, etc. are included with
pa(0.6)=2, afle'el+ > bie'. (4)  fractional-step coupling. Provisions are made for second-
i =0 order time accuracy with a Runge-Kutta style time stepping
for the convection steps, while all source terms are subjected
A recursion relation is obtained for the coefficientspgf, ; to Richardson extrapolatiof26]. Since this is a time-
in terms of those op,,. Beginning withp,=1, the remain-  dependent simulation, the computation progresses until some
ing polynomials have been determined by the use of a comprechosen total simulation time has been reached.
puter prograni20]. The magnitude of the largest coefficient  There are several advantages of this approach. Short-
|ajj| of each polynomial is found to grofaster than expo- wavelength numerical phenomena are substantially sup-
nentially with n. The exponential factoB" is thus over- pressed by the monotonic convection algorithm, while the
whelmed by the polynomigh, asn increases. As a conse- numerical dissipation for longer wavelengths is substantially
quence, the series cannot be considered to be convergemmoved. These considerations are particularly important for
and the entire method must be considered to be of questiosuch a problem in which conditions vary widely across con-
able validity. figuration and energy space. Very litte priori knowledge
More recently, energy-resolved solutions have been develbout flow regime(convective vs diffusive, supersonic vs
oped. Some are based on statistical representations of tlsebsoni¢ or strong nonlinearitiessteep gradienjss needed
underlying kinetics using quasiparticle techniques, such a# order to obtain a stable and accurate solution. Further-
Monte Carlo[1,21]. These are useful, but suffer from the more, no assumptions about the dynamic stability of the sys-
usual limitations of statistical approaches in that the numbetem of equations need be made, and no selection rules for
of particles that must be simulated becomes prohibitive agarious possible branchésegarding, for example, the sonic
more of the “tail” of the EVDF is included. singularity of ion transporf27]) in the solution need be de-
Other kinetic-based schemes have been devised, whiachised.
treat the EVDF by a sequence of convective steps and colli-
sion stepd2,22] in which the convective steps are treated
with very high accuracy. However, remapping onto the grid IIl. ELECTRON EQUATIONS
is required and the amount of error introduced by this pro-
cess is difficult to quantify. Furthermore, this is also true for As pointed out in Ref{6], the elliptic representation can
quasiparticle schemes, not all quantities in the simulation are€ viewed as a particular closure to the two-term spherical
appropriate|y treated by this process, |eading to a hybrid’larmonic expanSion. However, r?.ther than the traditional
scheme in order to obtain a self-consistent solution. componentd y(r,u) (isotropig andf(r,u) (anisotropig, it
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is advantageous to define new quantities, and to choose the the result oimultiplication of monotonic quantities, and

dependent variables as not division. This process tends to suppress short-wavelength
(grid-sized phenomena without the need to include artificial
n(r,u)=vn(r,u)=4mvfo(r,u) ) dissipation[28].

The equations of the elliptic representation can be rewrit-

and ten for cylindrical geometry and axial uniformity as

f(r,u) 1 Fl(r,u)

X0 = s T3 1,0

(6) 3
dnp  1d(rpuX) - - on
w T T T altEXI= @
wherev is the electron speefu=(m/2e)v?], and n(r,u) coll

and['(r,u) are the original variables defined in REg]. This
new choice of variables ensures that derived quantities wiland

ax+xx E)Z‘”ZJF i ! 3 1]x. 5}~ ! 3 1[(E-X)X
AT T T R P e X %y (£
%X 3)(1 1 (977$13X1 1 E)Zlﬁn dv1X+v X\1 dn|.
A 2\ Ty n or ox2\ "y v(.)nﬂu ar|2 b% 2 ynr?rr
+ 311x+1(1x1ané+13x 1)”)2@)2 N 8
vaulz| Tl Ty n B e 3y T g E ORI ] ©

where E is the electric field, X=|X|, the eccentricity,y  last term on the right hand side i§ a “rotation” term that
= y(X), is defined in Ref[6], andn= »/v from Eq. (5). serves not to change the magnitudeXafas can be seen from

~ The collision operatorsd(-)/ét)con consist of contribu-  formation of its dot product withX), but only to rotateX
tions from elastic collisions with neon atoms, inelastic eXCi-tovard the negative of the direction Bf

tation collisions with neon for the excited states 3S3P1 L .

o=°F - Considering each term separately, it can be seen that all
3S1P1, 353P2, 3S3P0, and a lumped 3P state, and ionizaltigt; s aside from the advection terms, the rotation term, and
collisions for neon in the ground state as well as in the

3S3P2 and 3S3P0 metastable states. These terms follow tmee collision term actually disappear |a§|—>1. The rotation

forms outlined in Ref[6]. term does not change the magnitudeXgfwhile the advec-
Kinetic data for elastic collisions are taken from Robert-tion terms serve only to move thé field around in phase

son[29], Massey and Burhof80], and Register and Trajmar space, and can create no new maxima or minima. Thus, as

[31]. Data for the inelastic collision terms for excitation are long as the collision term is well behaved, E§) has the

taken from Registeet al. [32]. proper asymptotic behavior in that the anisotropy is limited
lonization collisions are treated with the aSSUmption Ofin its growth to phys|ca||y reasonable Va|ué§|(< 1)

equal energy sharing of the newly created electron with the .o 1 jision term is. from the definition of

scattered electrof83], which is a suitable approximation for ' '

the low energies expected in the positive column. Each of

these collisions have a different target species, since ioniza- SX v [ ST 108
tion from metastables is allowed. This term is represented as (_> :_(_> _2_(_77) ] (10)
ot coll 7 ot coll Y ot coll
57] ! ’ ’
5 =Z Nj(ND[47n o1 ;v )v' —noi1j(v)v], (9)
ion ! Following the approximations of Reff6], the first term is

wherev’ is defined in terms of the and the ionization

energyu; by 3mv’?=mv?+u;, andN;(r) is the concentra-

tion of the target species. Kinetic data are taken from 2(%) %—(N(r)a (V) +N(I) D Toxm (V)
Johnstoret al. [34] and Rapp and Englander-Goldg35). n\ ot/ ., e oM

The left hand side of Eq8) includes both convectioand
advection operators. On the right are various terms propor- +E N (Do i (0) |oX (11)
tional to the logarithmic derivatives of or n. The second to LM '
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where oy v j() denotes the momentum transfer cross secfluxes at this boundary to zero, including the diffusion/
tion for the excitation process denoted jbyfhe second term antidiffusion fluxes of FCT. In fact, it is only these fluxes that
follows from the previously computed termé 4/ 6t) .o - necessitate a condition on this boundéadf other flux terms

It is interesting to take the terms of E(.0) back to their ~ vanish naturally au=0). Since the domain is restricted to
definitions in Sec. IV of Ref[6], and to note that the out- positive values olu, suppression of fluxes is accomplished
scattering terms identically cancel, leaving only the in-by setting
scattering terms. Thus, the strict definitions of the collision

terms lead from Eq(10) directly to n[i,0]=q[i,1], (13
S% ') v and the resulting solution will enforce the limit af|,—g
<_) =N(r)v o (U_ [oep(v)X(v") —0, as grid spacing\u vanishes.
ot ) on 7(v) | p* ’ At r=0 a similar symmetry condition requires that
X.(0,u)=0, while d5/du|,—,=0. Thus
_ '))Z )1+ N(r) 7w’) E U_/Z . . . .
et IX)FNMv = iy 2| 20,i1=nL,il, X[0,i1=-X[Lil. (14
X[ T oxp (WX -0 ; (W)X(0)] At u=« the boundary conditions clearly require that
exe, e y > . R
. o —0 andI'—0. However, the means for representing this
n(v") v'? S limiting trend for some finite maximum value of=u,,,, has
tv 7(v) ; i(r) 22 [oipi(0)X(®") not been thoroughly examined in the literature. Simply tak-

ing »[i,M+1]=0 andf[i,M +1]=0 tends to incorrectly
—o’i’T’j(U'))Z(v)], (120  estimate the flux across the boundary. Various attempts to
create an outflow boundary condition that supports correct
From their definitionsop(v)<or(v) for all collisions, so wave motion across the boundary have also been found to be
that as|X|—1, each negative term will always be greaterinadequate. What seems to work best is a simple extrapola-

than the corresponding positive term, as Iongﬂ)é@v’)| is tion of the tail of the distribut?on function onto the guard
o . i T a0 cell. The extrapolation can be implemented in various ways,

also limited. However|X(v')| is also limited by a similar bt 3 simple method is to project logarithmically from some

process, so that as long as proper asymptotic behavior igye of u<u,,,,, throughu.,,, and onto the guard cell.

provided at the boundaries, it will be preserved everywhere.l_his projection is done for anduT with the same factor. so
Thus, and as one would expect, collisions limit the growth of '

anisotropy, and generally contribute to its reduction. Lhat gnisotropy, and henck, is unchanged across this
i . 5 oundary.
The boundary conditions must be established7f@nd X - . . .
at u=0, U=U,., r=0, and r=R. Within the finite- At r=R there is an absorbing-wall boundary condition.

difference context, these are described by the inclusion of aTh|s condition has received significant attention in the litera-

P » . . Pure, and is especially critical for a continuum description
extra layer of “guard cells” surrounding the computational . . : X :
) : . that pays strict attention to correct asymptotic behavior with
domain. For the two-dimensional spagel), the computa-

tional domain[i,j] is defined by Ei<N and 1<j<M. regard to anisotropy. For example, a similar problem consid-

The boundary condition formulas must determine the con—ered by Morse and FeshbafB6] arrives at an approximate

X S . ) condition based on angular averaging resulting in a choice of
:grnrfr?s(gf (t:ﬁgs Zli[ct)a,sl]"t[hNnthﬁéJ gjo%aorl ?QS [IﬁMs?::;I] blg nd_f1~1.5f0. This clearly violates the very assumption of low
aries are the\rlm IcL)jcat:g alt the mid o;nis betvF\)/e)(;nI uarducelfisniSOtrOpy upon which the condition is based.
P 9 Similarly, a “loss-cone” concept has been introduced

and their nearest neighbors within the boundaries, l[3,5] in which electrons in the final cell nearest to the ab-

all ?:r:]eoﬂitrﬁsllﬁow:nﬂ 3‘;22?;fotr;]cgt'ol?:rgrceenfg?fgsfo sorbing wall are absorbed with a rate determined by the frac-
P : nume ¥ 9 ; tion of electrons with sufficient radial velocity to overcome
are needed for proper operation of the flux-correction algo;

rithm, which effectively makes all ime-dependent equation the potg_ntial of an assumeq infinitesimal sheqth. In.addition
secor,1d order in all space dimensio@atbeit generally with Yo requiring knowledge of this assumed potenual, this model
vanishing second-order contributions also.depe.nds upon an assump'tlon of sr_naII amsotropy, with-
At u=0 in the absence of any source of electrons there, i ut mqludmg _the effects qf anisotropy n the_mo_del _|ts_el_f.
- 2 - ’ Thus, in conditions for which the wall absorption is signifi-
follows thatX(r,0)=0, and thaX[i,0]= —X[i,1]. The con-  cant enough to cause large distortions to the angular distri-
dition for (r,0) can be obtained from the integration of Eq. pytion, this model will not result in proper asymptotic behav-
(23) of Ref. [6] (after multiplying byv3dv) betweenv=0  jor.
and some small value af. Considering thatl| must be of Still other analyses exig#] for which a functional form
orderv in this region, and the nature of the quantityy  for f,,(R,u) is assumed, without strict physical basis.
(which has no first-order dependence, as seen from Fig. 2 of In the present work, a boundary condition has been de-
Ref. [6]), it follows directly that on/du|,_o=0. Thus, it vised, which allows for proper asymptotic behavior under all
would seem correct to sejf(r,0)=0 with an apparent sin- degrees of anisotropy, as well as for all ranges of grid spac-
gularity in g/ du| ,—o. However, it is also necessary to set all ing (Ar) and mean free path\(,). This condition is based
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on the idea that the absorbing wall of the bound column igo the same component, and the other is proportional to the

equivalent to an unbound domain containing an infinitesiyadial component of’. The first term acts as a collisional
mally thin, perfectly absorbing sheet located at position absorption term that is only active in the last cell near the
=R. This sheet has an infinite absorption rate for eIectron@Va”_ The other term has properties similar to a Correspond-
that reach positiom=R and are moving with pOSitiVG radial |ng radial derivative term in the dynamic equatikﬁqs_(?)
velocity. Thus, electrons at the wall are absorbed accordingind(8)] for each component, and can be combined with that

to the rate term term by forming an equivalent continuous projection onto
_ the space beyond the wall. A complete derivation is provided

(5_f) _ —u,fo 8r=R) if v,>0, (15) elsewherg37]. The result is that the absorbing-wall bound-
ot/ 10 if v,<0, ary condition can be represented by both an absorption term

and a boundary condition. For the isotropic component
wherev, is the radial component of velocity and the deltathe absorption term is
function &() accomplishes the infinite absorption rate in an

infinitesimal region. In the discrete space of the computa- on v -
tional domain, subscriptV indicates that the term applies in St = Es®)|g|Pa(m7, (19
the last computational cell§N,j], near the wall, and the w
infinite rate is approximated with a rectangular function:

where

of — (v, /d)fP(v) if v,>0,
g ”{ ! r a9 1 :
w (0 i or=0, Po()= 5571 2(1-V1-7)
» e
whered=3Ar is half the grid spacing at the wall arR{(v) Y= Y
is a function necessary to take into account the fact that for a >
finite value ofd, there is also a finite probability for colli- Yo | (r=v) (WWI=vztw) 20
sions to occur with other specigthat is, notall electrons Y L) (Wi-vi- )
within distanced of the wall having positivey, will actually
reach the wall; it is inherently a multibody collisipn and similar expressions are derived for the anisotropic com-
P(v) can undoubtedly take on many forms for purposesponents.
of approximation. It is only necessary thB{v)—1 as¢ The boundary condition is
=Ayq/d—x, and P(J)—>O as¢—0. One such approxima- ) )
tion is the exponential relation 7IN+1,j]=[4E3(§)—1]9[N,]j]. (21)
P(v)=e &/, (17)  Each of the components &f has a similar condition, so that
X is unchanged across this boundaryX[K+1,]]

This approximation also accounts for the particular directioni)z N i
of the electron and hence the fact that its distance to the wall [N.JD). ) .
along its path may be different from its perpendicular dis- The absorption term foX is
tance to the wall.

The angular moments of this collision term can now be 85X v - - -
taken according to the methods outlined in Réf. For the )~ EOlg {[Pa(»)+ P (M]IXr
isotropic component of, one obtains w
(577) yn(ru) (v +[Pa(7)+Po(7)1X.2}, (22
w 271n ﬂ d whereP,() andP,() are functions similar td&®,() [37].
- This boundary condition has proper asymptotic behavior

2m (a2 COS y)sin e (@meos) for all degree; .of anisotropyy(—>q, vy—=*1, y,—0, qnd
Xf f i dyde, v,— *£1). Efficient, accurate routines for the evaluation of
o 1=y,cody)—ysin()cog ¢) P,. P,, andP, are availabld¢38]. Interestingly, the limit for
(18) Ar—0 leads to the continuum boundary conditions of

0

where ¢ is the angle in théab frame to the radial outward afg 2 afq, 2 afq, 2
direction andg is the corresponding azimuthal anglg.and A o Ay ¥ o mflz'
v, are the radial and axial components of vector eccentricity, (23
y=(y/X)X. Expressions similar to Eq18) for the aniso-

tropic components follow in a similar manng7]. along with the limiting forms of the absorption terfisgs.

From these integrals, two terms are obtained for eaclil9) etc] which will exhibit infinite absorption rates as
component of the distribution function. One is proportional=1Ar—0.
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IV. HEAVY-PARTICLE EQUATIONS : N )F P ( S KT 377)
ry=—N(r u—yuvu —_—
The heavy particles(neutral neon, metastable states wel1)= N o aul v %% e Gy
3S3P2 and 3S3P0, and joare considered to exchange en-
ergy so well among themselves and with each other that they S v(u— } k_T) 7ldu (29)
substantially achieve a Maxwellian distribution at a common elel 2 e '

temperature. Equations for the conservation of mass and mo-
mentum are solved for each species. Since heating of thand «(T) is the thermal conductivity for nedm0].
neutral gas is allowed, an energy conservation equation is For ions, mass conservation is as follows:
solved for the neutral gas.

Beginning with the neutral gas, it must be considered that an; 1 a(rnjvy)
radial flow of ions to the wall will drag neutral gas, and T FT:Qi' (29)
cause a parasitic flow. This parasitic radial flow is counter-
acted by axial flow tending to reequilibrate the pressurewhere the ionization rat; is determined from the electron
Without knowledge of the axial conditions, it is impossible energy distribution as
to specify the rate of this reequilibration. The flow is inher-
ently two dimensional, and thus requires some term to rep- e %
resent the axial flow that results from the radial flow of neu- Q== 2 N,—J no; jv du, (30
tral gas. A heuristic approach is taken by introducing a time m-] 0

constant for pressure relaxatian, to describe the equili- o .
brating effect. For large values of, axial flow is slow, and  WhereN; refers to each of the ionizing species, namely, neu-
a radial pressure difference will be maintained. For smalfsrgteneon' 3S3P0 metastable state, and 353P2 metastable

values of r,, radial pressure is quickly equilibrated. The . : .
Momentum conservation for ions is

mass conservation equation for neutral gas is thus

onvi.  1d(rnp3) e 1 ap;
ﬁ Ea(rNUNr)_’_a(NUNz):O’ (24) (;t B F (9:’ i :MniEr_M%'f‘wiﬂiN(er_Uir),
ot r ar 0z (31)
whereN(r) is the neutral gagneon concentration, and where p;(r)=n;(r)kT(r) is the ion pressure anHl, is the
its radial velocity. The axial term is estimated as radial component of electric fieldE.
For each of the metastable excited species, the transport
d(Nvy,) N Pn equations are similar to those of the ions, but without the
0z 72( - E) (25 electric force term in the momentum equations.

Boundary conditions for the ions and metastable states are
) taken to be the obvious symmetry conditions at the axis
wherepy(r) is the local gas pressuf@y(r) =N(r)kT(r)]  (n,[0]=n,[1]; vi[0]=—v;[1]) and perfectly absorbing at

andpy is the reservoir pressure. the wall. The absorbing-wall condition is derived from the
Momentum conservation is represented by same argument that led to the absorbing-wall conditions for
electrons, but for the heavy-particle consideration is made

d(Nuy,) 1 d(rNonone) IpN for the assumed Maxwellian distribution function. The result
gt + T ar T + NN (v —vne), is a set of conditions for the ions that are similar to those for

(26) electrons, with an absorption term and a projected boundary
condition. Details of this derivation can be found elsewhere
: . . : : [37].
whereuv,; is the radial velocity of the ion gas, and is a
collision rate for momentum transfer between neutral neon
and the neon ion taken from the mobility estimatgs].
Energy conservation for the neutral gas is represented by poisson’s equation can also be written in time-dependent
form. The need for such a form comes from the tendency of
A(Nuy) 1 a(rNupopy) a static representation of Poisson’s equation to exhibit nu-
+ = merical instability in a time-dependent simulation due to the

V. FIELD EQUATIONS

at r ar s .
infinitely fast propagation of roundoff error that creates a
19 aT 1 d(rony) violation of the Courant stability criterion.
Ty oar\ K| TN T T @es (27) Afictitious electric field “velocity” Vg(r), is used to mul-

tiply Poisson’s equation¥- E=p./e,):

whereuy(r)=3(k/e)T(r) is the neutral thermal energy, 1
is a term representing collisional exchange of energy with V-(EVg)= —pVg+E-VVg, (32
electrons, €o
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FIG. 1. Average electron energy and radial potential as a func- F!G. 2. Radial electron energy flux as a function of radial posi-

tion of radial position for 10-mA and 100-mA steady-state currentstion for 10-mA and 100-mA steady-state currentsRat1 cm in
atR=1 cmin neon at 1 Torr. neon at 1 Torr.

which, when added to the magnetostatic form of Ampere’s

law [(aE/&t) + (1/60)3=0], gives another dynamic equation
for E, . In cylindrical coordinates with axial uniformity, this

R e (R (x
|=—277ej Fezrdr=—27-re—f f X,nuv durdr,
0 MJo Jo
(35

IS and the axial field is determined from the time-dependent
equation
JE. 1 I(rE,Vg) e AY4
a—tr'i‘r%zf—(rer_nivi)'i‘Era_rE dEZ_ 1 | | 36
1
+—(nigi—ene) Ve, (33
€o VI. RESULTS

The complete set of time-dependent equations for elec-
wherel',, is the radial electron flux. Equatid83) is a con-  tron, ion, metastable, and neutral species, along with both
vective flow equation, with some unusual source terfis. radial and axial electric field have been solved numerically
can take on many possible forms. It has been found that for a particular sequence of conditions. A grid is chosen with
very simple form works well: 50 uniformly spaced cells in radial position, and 100 nonuni-
formly (higher density at lower valugspaced cells in ki-
netic energy. Beginning with some arbitrary initial condition
(chosen as a Maxwellian distribution for electrons in this
cas¢ the computation proceeds with,=100 mA until
steady state is reached. A change is then madd,to
=10 mA and computation proceeds until steady state is
where the constan¥, is chosen for accuracy. The choice again reached. The steady-state results are then remapped
should be small enough to ensure that 83) does not limit
the time steplvia the Courant conditionof the simulation, ol ' . . ' ]
while at the same time guaranteeing that the static Poisson’ T(r)@10mA ——
equation is well represented in, and does not disappear int T(r)e10omd — -
the roundoff error of, the dynamic equation. A value\gf
chosen to be the about 1% of the electron speed of the maxi
mum electron energy has been found to work well. It canT(¥)
also be showr(see details in Refl41]) that the system of
equations is dynamically stable only fot>0.

Finally, the axial field is calculated by inserting the dis-
charge into a circuit with a current source of magnituge
and a parallel capacitangg, chosen to be so sufficiently
small that it does not dominate the rate of relaxation to 0 0.002 0-004 0.006 0008
steady state, nor allow a relaxation oscillation to occur. A r (m)
value of 300 pFmis used in these simulations in neon. This F|G. 3. Radial neutral gas temperature profiles at two values of
technique eliminates the difficulty of enforcing a constantsteady-state current. Although the complete thermal steady state has
condition on the axial current. Instead, the axial current ishot been completely reached for either case, there is clearly a dif-
calculated from ferent trend caused by parasitic flow at the higher current.

2

r
Ve(N=Vyx—;

= (34

420 -

400 y

380 - b

360 b

340 - 4

320 4

300 1 1 1 1

0.01
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FIG. 4. Radial anisotropy as a function of energy and position, |G, 5. Transient response of axial fielcalculatedl and termi-

at 10 mA. The natural boundary of trapped electrons is clearlyg| voltage(measurejito step change in current.
visible, which mirrors the potential profile.

onto a grid with 100 radial cells and 200 energy cells and run 1€ radial anisotropyX, for the 10-mA steady state is
for 1 wsec to get higher resolution and to test the truncatiorpOWn in Fig. 4. From this it is clear that there is very low
error. anisotropy within the artificial boundary of “trapped” elec-

The entire distribution function is available for all of these rons defined by the potential profile as shown in Fig. 1.
conditions, although it is often most convenient to plot only These electrons lack sufficient energy to escape, and so
certain derived moments of these. For example, Fig. 1 show&Pend a lot of time in this region suffering many directional
the average electron energy as a function of radial positioﬁhanges due to collisions and electric forces. Those that man-
for both steady-state values of current. age tp be taKen above FhIS boundary appear to take on a

Another important moment quantity is the radial heat fluxchaotic behavior at the higher energies. Upon closer exami-
je, defined as nation on a short£1ns) time scale, it becomes clear that

there are waves and oscillations taking electrons out to the
" e (= walls in a very dynamic process, and that steady state appar-
jue(r)=f uf(r,u)v, d®v = —f uX,pvdu (37 ently does not strictly exist. Due to the nonlinear nature of
0 mJo the set of coupled equations, the presence of such unstable
behavior can be important since the resulting solution will
and shown in Fig. 2. It is clear that the significant negativehave different mean values than would a corresponding so-
excursion of this quantity, as first described for an energyiution to the time-averaged steady-state equations. The abil-
resolved kinetic description by Uhrlandt and Winklgf] ity to examine these unstable effects is a significant advan-
(and later confirmed by othefd,15]) is also found by the tage of the time-dependent approach.
present techniques. Complete sets of data for these conditions are available in

One interesting aspect of the present simulation is theéabular form elsewherg4?2)].
description of neutral gas heating. The model described There is generally a lack of published measurements that
above relies on an axial relaxation parameteto determine  can be used for verification of these results. The quantity that
the degree of pressure equilibration allowed in response toan be measured most easily is the axial electric figldAt
the parasitic radial gas flow caused by radial ion flow. For thea pressure of 1 Torr and a radius of 1 cm, there are few
chosenr, of 100 ns, the effects on heavy-particle tempera-published measurements, most are quite old, and results are
ture is shown in Fig. 3. While it could be argued that thevarying[43—45. For the present work, axial field measure-
thermal time constant of the system is somewhat longer thaments were made using commonly available laboratory
the 100—-150Qus of the simulation time, and that true steady equipment, by means of two independent techniques. One
state is not yet established, there is clearly a different trentechnique utilizes short pulses of direct current, while the
for the two current levels. At the higher current, the parasiticother utilizes a superimposed high-frequency signal. Details
flow is such that convection cools the central regi@ubject are given in Ref[46]. The measurements are performed on
to the model assumptiopswhile carrying heat and compres- custom-made neon tubes obtained from a speciality lighting
sively heating the outer regions. At the lower current, theshop[47], made of standard-25 tubing, and containing cold
parasitic flow is much lower, and a more conventional profilecathodes of the type typically found in the neon sign indus-
is obtained. try. Comparison of calculated field with these various mea-

TABLE |. Axial field calculations(in units of V/m) compared with various measurements.

Calculated dd46] ac[46] Kaganet al.[45] Lompe and co-workerg43,44)

10 mA 300 393 467 200
100 mA 266 349 303 170 244
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40 x 102 T T T order to obtain ionization balance.
3EX100 o rso%mm The unstable fluctuations discussed in the preceding sec-
sox1® [ % T Seam T tion are particularly strong near the wall where electrons en-
25xW00 1Y 7 =98mm — counter a repulsive sheath. Figure 6 shows the radial electron
20100 1 B 1 flux on a short time scale after the steady state of 100 mA has
Lo (2 L5x 100 0 3\ been reached. This figure clearly shows erratic fluctuations in
10x102® | ! de H flux, which are large, confined to the region near the wall,
50x10% - TN AN T\ A N very fast, and hence, do not appear in other quantities such as
0.0x10° ook A N\ e A ot the computed axial field. In light of the fact that the compu-
—-50x10® L/ SN SRR tational time step for these computations is of the order of 1
—1'0“320“05“ 50x'10_m' PP T Era——— ps, while the oscillation period is around 1 ns, and that the
) ’ Time (5) ‘ oscillation persists at different grid spacing and time steps, it

is not likely that this effect is a numerical artifact.

FIG. 6. Radial electron flux near the wall as a function of time  To analyze this situation, it is possible to perform a linear
for “steady-state” results at 100 mA. An instability is found with a stability analysis of the equations describing the electron gas
time scale of 1 ns. near the wall by making some simplifying assumptions. The

complete Boltzmann equation, or even the elliptic represen-
surements is shown in Table I. The calculated results are itation of it, is too unwieldy to provide a concise result. For
reasonable agreement with experimental results that thenthe purposes of this stability analysis, the traditional ap-
selves vary over quite a large range. proach of assuming a Maxwellian distribution for the elec-

The transient response of the terminal voltage for a stefrons will be taken. The only quantities that are allowed to
change in current from 100 mA to 10 mA is shown in Fig. 5. change on the short time scale of interest are electron con-
It is clear that the initial respongen a time scale of a few centrationn,, radial electron flud',, electron temperature
us) to the step is largely ohmic, and that quite some time isT., and radial electric fiel&, . The short time scale dynam-
needed in order to reestablish the ionization balance. In thes is described by the following set of equations:
subsequent steady stdteveral hundregs latey, after ion-

ization balance has been reestablished, the nonohmic result is N e

such that the voltage at the lower current is somewhat higher ot ox (38)
than that at the higher current. The figure also shows the

calculated values of axial field for the transient connecting ey o6 e kTe dng

the two steady states. From this comparison it can be seen g Tax aneEr_W X vmler, (39

that the calculated transient response of the positive column
generally resembles the measured response of terminal volt-

- i 3 KT, 3 KTev T d
age, although with a somewhat faster recovery. Since the 2%, 20 ele T le kT e
terminal voltage measurement includes all transient effects "¢ 4t € ox Coaxe ¢ % fax
associated with anode and cathode processes, as well as all
axial effects that are only crudely approximated in the model, —el'gE,, (40)
the agreement is reasonable.

JE, e
e (nimne), (41)
VIl. DISCUSSION ©
Due to the large disparity in relevant time scales, simulawhere ionization is considered to be too slow for a process to
tions using the described techniques are very time consunfave an effect on the time scale of interest. Thermal conduc-
ing. Typically, complete runs take 6—8 months of CPU timetivity « is estimatedsee Raizef39]) as
on a reasonably fast work statigf33-MHz Alpha. Faster
machines now available will reduce this time by a factor of K 5kT,
3-6, and another similar factor could be obtained by simply K oom’ (42)
ignoring neutral gas heating with its long time constant and M
relatively_minor contribution. Howeve_r, the use of thes_eand a constant cross section of X.90°2° m? is assumed
methodslls gener_ally restricted to speqal test cases for WhICRY determination of the collision frequenay, . Lineariza-
detailed information about all of the included physical ef-qn of these equation, and the introduction of perturbation

fects, as well as their dynamic behavior, is needed. R ™ . .
The dynamic equations, together with the self—consisten‘f‘uat:t't'eS Oe.T'er.Te,Er) leads to the following eigenvalue
' problem:

boundary conditions, form aab initio description of the
positive column, constrained only by the assumptions of -~ =

axial symmetry and axial uniformity. The only input to the anetj Ble=0, (43
model is kinetic(collisional) data, host gas pressure, and
axial current. Since the model is not cast as an eigenvalue
problem, there are no extraneous parameters to be adjusted in

~ e -~ e . kT ~
arer+mneEr+EErne+1B?ne+ vml'er=0, (44)
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FIG. 9. Computed results of radial ion velocity shown along

FIG. 7. Results of eigenvalue analysis of a simplified short timewith local sonic spee&/ = ykT(r)/M and mobility limited speed

scale stability model. The real part of the eigenvalue, Be(s
shown as a function of wavelength. Instability is indicated by posi-
tive values of Reg). The associated oscillatory frequency for the
unstable portions, found from the imaginary partaofnot shown,

is of the order of X 10° s 1.

~ 52 ~ ) 3 . k ~
anekTe+J,8§(Fer—vene) +1Bve§nekTe+ E,sznekTe

+el,E +eET =0, (45)
o e-
JBE,=— ane’ (46)

wherea is the (complex temporal growth parameter agl
is the (rea) spatial wave number of the perturbation with

V,=uiE, for =100 mA.

tion of the present worksee Fig. 6, suggesting that the
instability is not an artifact of the solution, but a feature of
the transport equations and, hence, has a physical basis.

A fluctuation also appears in the ion flux, as shown in Fig.
8 for several disparate points in time near the steady state at
100 mA. No attempt has been made here to analyze the
stability of this region on the appropriate time scale, how-
ever, its location appears to coincide with the region in which
the radial ion velocity crosses through the ion sonic speed.
When an average is taken over sevetal in order to filter
that fluctuation, the ion velocity profile shown in Fig. 9 is
obtained. This figure confirms the analytical result of Ingold
[14] in which the ion velocity crosses the ion sound speed at
roughly the same point as the ion mobility speéddfined as

wavelengthh (B=2=/\). For conditions found near the ,.E ) also crosses the sonic speed. In fact, from the present
wall, as determined by the results of the detailed computaresult, it would appear that the ion velocity is nearly identical
tion, the eigenvalues of this system are found by Schur derp the mobility speed everywhere except near the wall, and
composition48]. The result of this analysis for a wide range that the ion pressure term can, for all practical purposes, be
of wavelengths and radial fields is shown in Fig. 7. Clearly,neglected, despite the inclusion of a finite ion temperature.
for sufficiently short wavelengths, there are eigenvalues with  Due to the high degree of stiffness in this system, the
positive real part, indicating physical instability. Further- radial fluxes, derived from moments bf, (or X,), exhibit a
more, the imaginary part of those eigenvalues indicate thafuch greater sensitivity to small fluctuations in conditions
the temporal frequencies of the resulting unstable modes akfian do the quantities derived from momentsfgf(or 7).

of the order of 18s™*. This result is quite comparable with Figure 10 shows electron and ion concentration profiles for
the time scale found by the detailed time-dependent calculayrrents of both 10mA and 100mA, from which it is seen

1.0 x 10% T T T T

2.0 x 1017 T T T T
1.8 x 10'7 |- neExloggIOmﬁ — 4
19 | _ ni(x10)Q10mA - - - - --
8.0 x 10 o 1.6 x 1017 | ’ nQL0mA —
(m=3 n;@100mA + -« .-
650ns neni(m™) 14x 10 Kagan[45](x10)@10mA e ]
6.0 x 10'° - = 12x 1017 P _ Kagan[45]0100mA4 o
Ti(m—2s71) \ - 1.0 x 1017 - : -
40 x 10 - ~ T . = 8.0 x 108 -
6.0 x 1016 -
2.0 x 10%° - 4.0 x 106 .
2.0 x 1016 - S
0.0 x 10° ' ! ' ! 0.0 x 10° L L ' L
0 0.002 0004 0006  0.008 0.01 0 0002 0004 0006  0.008 0.01
r(m) r(m)

FIG. 8. Computed results of radial ion flux at several points in
time for| =100 mA. The long-wavelength, low-frequency oscilla-
tion nearr=0.5 cm is apparent.

FIG. 10. Computed charged particle concentration profiles at
both steady-state currents of 10mA and 100mA. Also shown are
measurements of Kagaet al. [45].
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107!
102
10-3
104

shown in Fig. 9 remains positivef;, clearly must swing
from positive at low energies to negative at higher energies
in order to give that result. Figure 12 shows this bimodal
characteristic at 100 mA. Trapped electrons are, in general,
flowing in a loop in phase space in which they move outward
at lower energies, upward in energy as their radial motion
slows, and inward at higher energies. The axial field adds
energy to the low-energy electrons so as to maintain their
ascent up the space charge potential and, at some point, to
move these to higher energies where their net motion will be
inward. There is a significant energy change along this loop,
bringing into question the assertion often made,18 that
total energy is a “constant of the motion” of these trapped
FIG. 11. Isotropic component of EVDF, #y(r,u), at electrons.
100 mA, at selected radii. SymbolsO(,L1,X,A) indicate the With such a concern, it remains to be determined fust
value Of(ﬁ(r)* d)W Corresponding to the boundary between trappednearly a functlon Of total energyo |S, and What use can be
and untrapped electrons at that radius. Also shown is the zergnade of this property. When applied to the present cylindri-
dimensional solution for on-axis conditions. cal geometry, the original work of Bernstein and Holstein
[18] would lead to takingf;, =0, for a first approximation,
that the profiles are quite smooth, and that quasineutralitaccording to the two-term expansion relation
holds nearly everywhere, except at the wall. The fluctuations
afy afo)

10-°
4r fo(s®m~C)

10—
107
108
10—°

10—10
0

in radial fluxes are evidently small enough and fast enough
to not disrupt these quantities. These results compare very fir=—Ay o T ou
favorably with the measurements of Kageinal. [45].
Although these computational techniques are applicable ayhenf,=f,[u— ¢(r)]. Neglect off, in the next relation of
higher pressures as well, the presented results pertain to prege spherical harmonic expansion
sures such that nonlocal conditions exist. Nonlocal effects
[16] tend to causé, to be nearly a function of total energy u 1 (rf,,) o , 1
(kinetic plus potential This trend is somewhat confirmed by 31— — m(gu(Erf1r+ E.f1,)— deu mfo) =Sinel

(47)

Fig. 11, in which the isotropic component of the EVDF is (48)
shown at various radii. Each curve is roughly the same as the
on-axis curve, shifted in energy by the local potentigt).  |eads directly to the integration described, for example, in

Trapped on-axis electrons have energies below the wall pggq. (40) of Ref.[18] as a first approximation fof,.
tential of 27 V. The excitation processes with energies at Equation(48) can be viewed as the divergence of fluxes
about 16.6 eV have a marked effect fif and cause a pre- of a flow in phase space. However, under nonlocal condi-
cipitous decline above that energy. The off-axis curves thefions, the elastic collision term of E¢48) is relatively small
mirror this decline, although without a corresponding declineand, considering circulation in phase space described above,
in the actual excitation energy. Thus, off axis, the axial f|e|d|t is clear that neg|ect Oflr in Eq (48) Is tantamount to
serves to replenish these artificially depleted energies, sugeglect of a quantity comparable to those retained. It is ex-
that a repletion of tail electrons exists over and above whajctly the conservation in phase space, as described by Eq.
would exist had the on-axis distribution simply shifted ac-(48), which determines that the contribution 6f, is not
cording to the local potential. Due to this “inversion,” tail negligible. Although its magnitude will be much smaller than
electrons can then return to the axis along a different, higheflz, its extra weighting byE, makes its contribution signifi-
total energy path than what brought them outward. This efxant. Furthermore, both the weightifioy E,) and the mag-
fect has already been evidenced by the presence of a negatijgude off,, in comparison with increasinfy, increase with
heat flux(Fig. 2, while the particle flux(a lower moment, ragjus, so that the relative contribution of these neglected
terms grows with radial position.
o2 f (10%m~1s) L In order to show the effects of nonlocality, the curve of
1F Fig. 11 labeled “OD” is shown, which is the result of a
zero-dimensional Boltzmann solution for the conditions
present on axis H,=266 V/m, N=2.41x10?? m 3,
n353p0: 1.75%X 1017 m73, n353p2: 6.2% 1017 m73) . A
much greater depletion of the energies above threshold is
found than in the corresponding complete solution. Evidently
the inflow of electrons into this region from radial positions
r(m) with higher potential energy is very significant.
Accordingly, the first approximation of the nonlocal elec-
FIG. 12. Computed radial component of EVDF, tron kinetic approach analyzed in Sec. Il is equivalent to
(47/3)v?f,(u,r), at 100 mA. solving a similar (albeit, spatially averaged zero-

30
u(eV)
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dimensional Boltzmann equation for the on-axis conditions, VIIl. SUMMARY
and then translating this solution to other positions by shift- A time-dependent. nonstatistical. first-orinciples descrio-
ing the energy axis according to the local potential. That the ; P : Istical, nrst-princip P

surplus of electrons above the “translated” threshold growstion of the dc positive column at lO\.N pressure has been pre-
with radius, as evidenced by the inward radial heat flux, jssented, analyzed, and compared with both static and dynamic

further indication that the NEK approximation becomesmeasurements of a.x_ial electric field in Iow—pressure neon un-
worse with increasing radius. Uhrlandt and Winklgt] der nonlocal conditions. The very versatile technique for
reached a similar conclusion, and also indicate that the agienerating these continuum solutions is equally applicable at
sumed strict dependence ﬁ('ﬁ on total energy also |eadsl hlgher pressures. The eIIIptIC representation of the Boltz-
even without spatial averaging, to the neglect of a radial fludmann equation has been reformulated in a manner that has
term. In fact, in somewhat a self-contradictory manner, thenumerical advantages. A self-consistent absorbing-wall
NEK method[see, for example, Ref. 5 E{) using Eq.(18)  boundary condition for the continuum equations has been
atr=0, compared with Eq(19)] could also be solved on devised, implemented, and described in detail. A time-
axis to yield exactly a zero-dimensional solution. Althoughdependent form of Poisson’s equation has been derived and
the concept offy as nearly a function of total energy is implemented. In addition to a detailed static picture of the
perhaps useful for qualitative analysis, the NEK methodol-state of the discharge, a dynamic description is also gener-
ogy for determiningf, does not properly describe the circu- ated. The temporal evolution of the positive column is thus
lation of electrons in phase space, and hence does not cajuantitatively described as it responds to changes in condi-
rectly represent the physics of energy flow and electron reusgons, or as those conditions potentially lead to physical in-
in the column. stability. The technique should lend itself to such situations
Quantitatively, the detailed computation finds a value forgg afterglows in which time-dependent solutions are neces-
the ratio|f,,/f,| of about 0.06 near the axis at low energies.sary_
The ratio ,, /fo) changes with radius, and grows to amaxi-  (ynder nonlocal conditions, the utility of the concept of
mum roughly where the subexcitation on-axis electronshe gVDF being nearly a function of total energy is seen to
reach their(radia) turning point, nearr=8 mm. There, e quite valid for its isotropic component, but to be of little
(f1,/f0)~0.006, which, although smaller thafi,,/fol, is  gility in actually determining that EVDF. In agreement with
not negligible when each is weighted by their respective field jprjandt and Winkle50], the present work indicates that

components,>E, atr=8 mm). _ _ the problem remains the one for which a detailed computa-
In the nonlocal regime, the energy balance is establishegyn js required.

via the radial circulation effect described above and eventu-
ally culminates in inelastic events near the axis. For this
reason, a simple estimate for the ralfq,/fy| in terms of

fundamental quantities in the nonlocal regime is not obvious.
In contrast, energy loss in the local regime is dominated by The author would like to thank John Ingold for countless
elastic collisions, leading to the familiar estimate of valuable discussions of the positive column and the history
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