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Analysis of the low-pressure low-current dc positive column in neon

Edward A. Richley*
P.O. Box 64, Gaithersburg, Maryland 20884-0064
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A time-dependent, nonstatistical analysis of the positive column in low-pressure neon is presented. The
analysis is based on the elliptic representation of the Boltzmann equation and so is tolerant of large degrees of
anisotropy. A self-consistent absorbing wall boundary condition is described, along with a time-dependent form
of Poisson’s equation. The equations are cast in a form that lends itself to a numerical implementation based on
a well established low phase-error monotonic method. An instability with short time scale is predicted near the
wall, and is analyzed. A scaling law for the various anisotropic components in the nonlocal regime is derived,
and a critical analysis of the nonlocal electron kinetic method is presented.
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I. INTRODUCTION

Despite its long history, the low-pressure positive colum
continues to be the subject of much theoretical analy
@1–5#. Owing to the increasing availability of computation
power, and to the inapplicability of various simplifying a
sumptions under low-pressure and low-current conditio
these models have become increasingly sophisticated.

The concern of these more recent models is that at s
ciently low pressures and low currents, the electron velo
distribution function~EVDF! is not accurately described by
singly parametrized function, be it Maxwellian or otherwis
Rather, it must be determined with both energy and sp
resolution. For any reasonable accuracy, a solution requir
significant amount of computation. Furthermore, the relev
time scales involved range from the time required for
fastest electrons in the simulation to cross a computatio
cell ~of the order of 1 ps! to the time scale for thermal relax
ation of the neutral host gas~typically 100 ms). This dispar-
ity makes the system quite stiff and, hence, computation
challenging.

At the highest energies of interest, and at absorb
boundaries, the distribution function will exhibit high ang
lar anisotropy. This anisotropy can be so great as to ren
the two-term spherical harmonic expansion invalid in tho
regions. As it is impossible to determinea priori which re-
gions of phase space will be in violation without risking
compromised solution, a robust representation of the Bo
mann equation is needed in order to smoothly transit
higher degrees of anisotropy when and where they occu

The primary purpose of the present work is to cast
Boltzmann equation, and other transport equations nee
for a description of the positive column, in such a mann
that a robust, self-consistent solution can be obtained by
use of a well-established time-dependent numerical te
nique of known accuracy and stability. The particularly nov
features of the present work are:~1! an implementation of the
elliptic representation of the Boltzmann equation as it app
to the positive column@6#; ~2! a time-dependent solution
resolved in energy, utilizing a monotonic method;~3! an
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absorbing-wall boundary condition that has validity for a
degrees of anisotropy;~4! a time-dependent representation
Poisson’s equation, which is well suited for monotonic me
ods; and~5! inclusion of the effects of neutral gas heating

II. BACKGROUND

Although the positive column of the low-pressure glo
discharge has been observed experimentally for over
years@7–9# its theoretical investigation has lagged somew
behind experiment and commercial application. The fi
published model of any significance was by Schottky@10# in
1924, followed thereafter by the more general treatment
Tonks and Langmuir@11#. Various refinements of this clas
of model followed@12–14#, yet all relied on the assumptio
that electrons exhibit a Maxwellian distribution, with a rad
ally uniform temperature. Furthermore, the relation betwe
electron temperature and ionization rate was left unspecifi
and the radial transport of electron energy was not includ

Radial flow of electron energy was eventually found to
a necessary component of models, especially at lower p
sure. A nice presentation of the evolution of these idea
given by Ingold @15#. Notwithstanding these refinement
these models rely on a fluid or moment description of el
trons, in which they are assumed to have a known, tho
possibly parametrized, distribution function.

As an intermediate step between such moment mo
and an energy-resolved Boltzmann solution, the nonlo
electron kinetic ~NEK! approach@5,16–18# has recently
been applied to the positive column. However, as the follo
ing analysis shows, there is some reason to doubt the val
of this method.

The NEK method is considered to be applicable wh
tube radiusR is much smaller than the energy relaxatio
distance for elastic collisions,lT . The isotropic componen
of the distribution function,f 0, is expanded as follows:

f 0~«,% !5 f 0
0~«!1 f 0

1~%,«!1 f 0
2~%,«!1 f 0

3~%,«!1•••,
~1!

where% is the dimensionless radial position coordinate a
« is the dimensionless ‘‘total’’ energy coordinate. Accordin
©2002 The American Physical Society02-1
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to the procedure, spatial averaging is used to obtainf 0
0, and

each successive term is obtained by a perturbation meth
In order to analyze the validity of this method, a simp

case will be considered. In this case, cylindrical geometr
chosen, and the radial potential is assumed to have a p
bolic profile. Only those electrons that are ‘‘trapped’’ wi
energy less than the wall potential will be treated, and i
ization is ignored in this example. A constant mean free p
for elastic collisions is assumed. These conditions yiel
particularly simple form of the Boltzmann equation, and
particularly simple form for each of the terms in the expa
sion. Details are provided elsewhere@19#, with the result that
each term can be represented as a product of a polynom
pn(%,«), and an exponential:

f 0
n5bnpn~%,«!e2«2

, ~2!

where b is a dimensionless ratio, presumed to be mu
smaller than unity, defined by

b5
EzlT

4f̃w
S R

lT
D 2

, ~3!

whereEz is the axial field andf̃w is the wall potential. It is
the factor ofbn which is presumed to cause convergence
the series. However, it is necessary to consider the magni
of pn , with the polynomial given by

pn~%,«!5(
i , j

n

ai j
n % i« j1(

i 50

n

bi«
i . ~4!

A recursion relation is obtained for the coefficients ofpn11
in terms of those ofpn . Beginning withp051, the remain-
ing polynomials have been determined by the use of a c
puter program@20#. The magnitude of the largest coefficie
uai j

n u of each polynomial is found to growfaster than expo-
nentially with n. The exponential factorbn is thus over-
whelmed by the polynomialpn as n increases. As a conse
quence, the series cannot be considered to be conver
and the entire method must be considered to be of ques
able validity.

More recently, energy-resolved solutions have been de
oped. Some are based on statistical representations o
underlying kinetics using quasiparticle techniques, such
Monte Carlo @1,21#. These are useful, but suffer from th
usual limitations of statistical approaches in that the num
of particles that must be simulated becomes prohibitive
more of the ‘‘tail’’ of the EVDF is included.

Other kinetic-based schemes have been devised, w
treat the EVDF by a sequence of convective steps and c
sion steps@2,22# in which the convective steps are treat
with very high accuracy. However, remapping onto the g
is required and the amount of error introduced by this p
cess is difficult to quantify. Furthermore, this is also true
quasiparticle schemes, not all quantities in the simulation
appropriately treated by this process, leading to a hyb
scheme in order to obtain a self-consistent solution.
02640
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Eulerian continuum approaches avoid these difficulti
These are often based on the two-term spherical harm
expansion@3,4# in steady state form. These tend to descr
the EVDF well, but have difficulty in regions where aniso
ropy is large and where the two-term expansion is, theref
invalid. However, the choice of a particular closure to th
expansion forms the elliptic representation@6# that does not
suffer from such a limited range of validity. Furthermor
dynamic effects can be included by seeking a time-depen
solution to the Boltzmann equation. The elliptic represen
tion, in time-dependent form, is the basis for the pres
work.

The time-dependent elliptic representation fits into t
general form of time-dependent transport equations,
which numerical solution techniques are well establish
@23#. Although such equations are generally used in the tre
ment of reactive flow@24#, their computational domain is
easily extended to include both space and energy dimens
as is needed for the energy-resolved description of electr
The heavy particles~ions and neutral gas! are treated as flu-
ids in the conventional sense~space only!. The components
of the electric field can also be represented in this for
Thus, one uniform solution technique can be used to desc
the evolution of all quantities.

A method based on flux-corrected transport~FCT! @23# is
used for the solution, with the multidimensional extension
Zalesak@25# providing the framework for the quantities de
fined on phase space. Convection terms are evaluated u
FCT, while the ‘‘source’’ terms representing body force
pressure gradients, collisions, etc. are included w
fractional-step coupling. Provisions are made for seco
order time accuracy with a Runge-Kutta style time stepp
for the convection steps, while all source terms are subjec
to Richardson extrapolation@26#. Since this is a time-
dependent simulation, the computation progresses until s
prechosen total simulation time has been reached.

There are several advantages of this approach. Sh
wavelength numerical phenomena are substantially s
pressed by the monotonic convection algorithm, while
numerical dissipation for longer wavelengths is substantia
removed. These considerations are particularly important
such a problem in which conditions vary widely across co
figuration and energy space. Very littlea priori knowledge
about flow regime~convective vs diffusive, supersonic v
subsonic! or strong nonlinearities~steep gradients! is needed
in order to obtain a stable and accurate solution. Furth
more, no assumptions about the dynamic stability of the s
tem of equations need be made, and no selection rules
various possible branches~regarding, for example, the soni
singularity of ion transport@27#! in the solution need be de
vised.

III. ELECTRON EQUATIONS

As pointed out in Ref.@6#, the elliptic representation ca
be viewed as a particular closure to the two-term spher
harmonic expansion. However, rather than the traditio
componentsf 0(r ,u) ~isotropic! and fW1(r ,u) ~anisotropic!, it
2-2
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is advantageous to define new quantities, and to choose
dependent variables as

h~r ,u!5vn~r ,u!54pv f 0~r ,u! ~5!

and

XW ~r ,u!5
GW ~r ,u!

n~r ,u!
5

1

3

fW1~r ,u!

f 0~r ,u!
, ~6!

where v is the electron speed@u5(m/2e)v2#, and n(r ,u)
andGW (r ,u) are the original variables defined in Ref.@6#. This
new choice of variables ensures that derived quantities
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be the result ofmultiplication of monotonic quantities, and
not division. This process tends to suppress short-wavele
~grid-sized! phenomena without the need to include artific
dissipation@28#.

The equations of the elliptic representation can be rew
ten for cylindrical geometry and axial uniformity as

]h

]t
1

1

r

]~rhvXW !

]r
2

]

]u
@v~EW •XW h!#5S dh

dt D
coll

~7!

and
]XW

]t
1vXr

]XW

]r
2v~EW •XW !

]XW

]u
1

1

r

]

]r H rvF 1

2X2 S 3
X

g
21D21GXrXW J 2

]

]u H vF 1

2X2 S 3
X

g
21D21G ~EW •XW !XW J

52XW vXrF 1

2X2 S 3
X

g
21D21G 1

h

]h

]r
1XW F 1

2X2 S 3
X

g
21D21Gv~EW •XW !

1

h

]h

]u
2H ]

]r Fv
2 S12

X

g D G1
v
2 S 12

X

g D 1

h

]h

]r J r̂

1H v
]

]u F1

2 S 12
X

g D G1v
1

2 S 12
X

g D 1

n

]n

]uJ EW 1
1

2X2 S 3
X

g
21D v

2u
@XW ~EW •XW !2X2EW #1S dXW

dt
D

coll

, ~8!
at

t all
and

, as

ed
where EW is the electric field,X5uXW u, the eccentricity,g
5g(X), is defined in Ref.@6#, andn5h/v from Eq. ~5!.

The collision operators (d(•)/dt)coll consist of contribu-
tions from elastic collisions with neon atoms, inelastic ex
tation collisions with neon for the excited states 3S3P
3S1P1, 3S3P2, 3S3P0, and a lumped 3P state, and ioniz
collisions for neon in the ground state as well as in
3S3P2 and 3S3P0 metastable states. These terms follow
forms outlined in Ref.@6#.

Kinetic data for elastic collisions are taken from Robe
son@29#, Massey and Burhop@30#, and Register and Trajma
@31#. Data for the inelastic collision terms for excitation a
taken from Registeret al. @32#.

Ionization collisions are treated with the assumption
equal energy sharing of the newly created electron with
scattered electron@33#, which is a suitable approximation fo
the low energies expected in the positive column. Each
these collisions have a different target species, since ion
tion from metastables is allowed. This term is represente

S dh

dt D
ion

5(
i

Nj~r !@4h8s i ,T, j~v8!v82hs i ,T, j~v !v#, ~9!

where v8 is defined in terms of thev and the ionization
energyui by 1

2 mv825mv21ui , andNj (r ) is the concentra-
tion of the target species. Kinetic data are taken fr
Johnstonet al. @34# and Rapp and Englander-Golden@35#.

The left hand side of Eq.~8! includes both convectionand
advection operators. On the right are various terms pro
tional to the logarithmic derivatives ofh or n. The second to
-
,
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e
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-

f
e

f
a-
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r-

last term on the right hand side is a ‘‘rotation’’ term th
serves not to change the magnitude ofXW ~as can be seen from
formation of its dot product withXW ), but only to rotateXW

toward the negative of the direction ofEW .
Considering each term separately, it can be seen tha

terms aside from the advection terms, the rotation term,
the collision term actually disappear asuXW u→1. The rotation
term does not change the magnitude ofXW , while the advec-
tion terms serve only to move theXW field around in phase
space, and can create no new maxima or minima. Thus
long as the collision term is well behaved, Eq.~8! has the
proper asymptotic behavior in that the anisotropy is limit
in its growth to physically reasonable values (uXW u,1).

The collision term is, from the definition ofXW ,

S dXW

dt
D

coll

5
v
h

S dGW

dt
D

coll

2XW
1

h S dh

dt D
coll

. ~10!

Following the approximations of Ref.@6#, the first term is

v
h

S dGW

dt
D

coll

'2S N~r !sel,M~v !1N~r !(
j

sex,M , j~v !

1(
j

Nj~r !s i ,M , j~v ! D vXW , ~11!
2-3
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wheresex,M , j () denotes the momentum transfer cross s
tion for the excitation process denoted byj. The second term
follows from the previously computed term, (dh/dt)coll .

It is interesting to take the terms of Eq.~10! back to their
definitions in Sec. IV of Ref.@6#, and to note that the out
scattering terms identically cancel, leaving only the
scattering terms. Thus, the strict definitions of the collis
terms lead from Eq.~10! directly to

S dXW

dt
D

coll

5N~r !v
h~v8!

h~v ! S v84

v4 D @sel,P~v8!XW ~v8!

2sel,T~v8!XW ~v !#1N~r !v
h~v8!

h~v ! (
j

S v82

v2 D
3@sex,P, j~v8!XW ~v8!2sex,T, j~v8!XW ~v !#

1v
h~v8!

h~v ! (
j

Nj~r !S v82

v2 D @s i ,P, j~v8!XW ~v8!

2s i ,T, j~v8!XW ~v !#. ~12!

From their definitions,sP(v),sT(v) for all collisions, so
that asuXW u→1, each negative term will always be great
than the corresponding positive term, as long asuXW (v8)u is
also limited. However,uXW (v8)u is also limited by a similar
process, so that as long as proper asymptotic behavio
provided at the boundaries, it will be preserved everywhe
Thus, and as one would expect, collisions limit the growth
anisotropy, and generally contribute to its reduction.

The boundary conditions must be established forh andXW
at u50, u5umax, r 50, and r 5R. Within the finite-
difference context, these are described by the inclusion o
extra layer of ‘‘guard cells’’ surrounding the computation
domain. For the two-dimensional space (r ,u), the computa-
tional domain@ i , j # is defined by 1, i ,N and 1, j ,M .
The boundary condition formulas must determine the c
tents of cells at@0, j #, @N11, j #, @ i ,0#, and @ i ,M11# in
terms of the values within the domain. The physical bou
aries are then located at the midpoints between guard
and their nearest neighbors within the boundaries.

Mathematically, not all of these conditions are needed
all components. However,numerically, the guard cell values
are needed for proper operation of the flux-correction al
rithm, which effectively makes all time-dependent equatio
second order in all space dimensions~albeit generally with
vanishing second-order contributions!.

At u50 in the absence of any source of electrons there
follows thatXW (r ,0)50, and thatXW @ i ,0#52XW @ i ,1#. The con-
dition for h(r ,0) can be obtained from the integration of E
~23! of Ref. @6# ~after multiplying byv3dv) betweenv50
and some small value ofv. Considering thatuGW u must be of
order v in this region, and the nature of the quantityX/g
~which has no first-order dependence, as seen from Fig.
Ref. @6#!, it follows directly that ]n/]uuu5050. Thus, it
would seem correct to seth(r ,0)50 with an apparent sin
gularity in ]h/]uuu50. However, it is also necessary to set
02640
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fluxes at this boundary to zero, including the diffusio
antidiffusion fluxes of FCT. In fact, it is only these fluxes th
necessitate a condition on this boundary~all other flux terms
vanish naturally atu50). Since the domain is restricted t
positive values ofu, suppression of fluxes is accomplishe
by setting

h@ i ,0#5h@ i ,1#, ~13!

and the resulting solution will enforce the limit ofhuu50
→0, as grid spacingDu vanishes.

At r 50 a similar symmetry condition requires th
Xr(0,u)50, while ]h/]uur 5050. Thus

h@0, j #5h@1, j #, Xr@0, j #52Xr@1, j #. ~14!

At u5` the boundary conditions clearly require thath
→0 and GW →0. However, the means for representing th
limiting trend for some finite maximum value ofu5umax has
not been thoroughly examined in the literature. Simply ta
ing h@ i ,M11#50 andGW @ i ,M11#50 tends to incorrectly
estimate the flux across the boundary. Various attempt
create an outflow boundary condition that supports corr
wave motion across the boundary have also been found t
inadequate. What seems to work best is a simple extrap
tion of the tail of the distribution function onto the guar
cell. The extrapolation can be implemented in various wa
but a simple method is to project logarithmically from som
value of u,umax, throughumax, and onto the guard cell
This projection is done forh andvGW with the same factor, so
that anisotropy, and henceXW , is unchanged across thi
boundary.

At r 5R there is an absorbing-wall boundary conditio
This condition has received significant attention in the lite
ture, and is especially critical for a continuum descripti
that pays strict attention to correct asymptotic behavior w
regard to anisotropy. For example, a similar problem cons
ered by Morse and Feshbach@36# arrives at an approximate
condition based on angular averaging resulting in a choic
f 1'1.5f 0. This clearly violates the very assumption of lo
anisotropy upon which the condition is based.

Similarly, a ‘‘loss-cone’’ concept has been introduce
@3,5# in which electrons in the final cell nearest to the a
sorbing wall are absorbed with a rate determined by the fr
tion of electrons with sufficient radial velocity to overcom
the potential of an assumed infinitesimal sheath. In addit
to requiring knowledge of this assumed potential, this mo
also depends upon an assumption of small anisotropy, w
out including the effects of anisotropy in the model itse
Thus, in conditions for which the wall absorption is signi
cant enough to cause large distortions to the angular di
bution, this model will not result in proper asymptotic beha
ior.

Still other analyses exist@4# for which a functional form
for f 1r(R,u) is assumed, without strict physical basis.

In the present work, a boundary condition has been
vised, which allows for proper asymptotic behavior under
degrees of anisotropy, as well as for all ranges of grid sp
ing (Dr ) and mean free path (lM). This condition is based
2-4
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on the idea that the absorbing wall of the bound column
equivalent to an unbound domain containing an infinite
mally thin, perfectly absorbing sheet located at positionr
5R. This sheet has an infinite absorption rate for electr
that reach positionr 5R and are moving with positive radia
velocity. Thus, electrons at the wall are absorbed accord
to the rate term

S d f

dt D
W

5H 2v r f v rd~r 2R! if v r.0,

0 if v r<0,
~15!

wherev r is the radial component of velocity and the de
function d() accomplishes the infinite absorption rate in
infinitesimal region. In the discrete space of the compu
tional domain, subscriptW indicates that the term applies i
the last computational cells,@N, j #, near the wall, and the
infinite rate is approximated with a rectangular function:

S d f

dt D
W

'H 2~v r /d! f P~vW ! if v r.0,

0 if v r<0,
~16!

whered5 1
2 Dr is half the grid spacing at the wall andP(vW )

is a function necessary to take into account the fact that f
finite value ofd, there is also a finite probability for colli
sions to occur with other species~that is, notall electrons
within distanced of the wall having positivev r will actually
reach the wall; it is inherently a multibody collision!.

P(vW ) can undoubtedly take on many forms for purpos
of approximation. It is only necessary thatP(vW )→1 as j

5lM /d→`, and P(vW )→0 asj→0. One such approxima
tion is the exponential relation

P~vW !5e2j(v/vr ). ~17!

This approximation also accounts for the particular direct
of the electron and hence the fact that its distance to the
along its path may be different from its perpendicular d
tance to the wall.

The angular moments of this collision term can now
taken according to the methods outlined in Ref.@6#. For the
isotropic component off, one obtains

S dh

dt D
W

52
gh~r ,u!

2p lnS 11g

12g D S v
dD

3E
0

2pE
0

p/2 cos~c!sin~c!e2(d/lMcos(c))

12g rcos~c!2gzsin~c!cos~f!
dc df,

~18!

wherec is the angle in thelab frame to the radial outward
direction andf is the corresponding azimuthal angle.g r and
gz are the radial and axial components of vector eccentric
gW 5(g/X)XW . Expressions similar to Eq.~18! for the aniso-
tropic components follow in a similar manner@37#.

From these integrals, two terms are obtained for e
component of the distribution function. One is proportion
02640
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to the same component, and the other is proportional to
radial component ofGW . The first term acts as a collisiona
absorption term that is only active in the last cell near
wall. The other term has properties similar to a correspo
ing radial derivative term in the dynamic equation@Eqs.~7!
and~8!# for each component, and can be combined with t
term by forming an equivalent continuous projection on
the space beyond the wall. A complete derivation is provid
elsewhere@37#. The result is that the absorbing-wall boun
ary condition can be represented by both an absorption t
and a boundary condition. For the isotropic componenth,
the absorption term is

S dh

dt D
W

52E3~j!S v
dD Pn~gW !h, ~19!

where

Pn~gW !5
1

g lnS 11g

12g D H 2~12A12gz
2!

1
g r

g
lnF ~g2g r !

~g1g r !

~gA12gz
21g r !

~gA12gz
22g r !

G J , ~20!

and similar expressions are derived for the anisotropic co
ponents.

The boundary condition is

h@N11, j #5@4E3~j!21#h@N, j #. ~21!

Each of the components ofGW has a similar condition, so tha
XW is unchanged across this boundary (XW @N11, j #
5XW @N, j #).

The absorption term forXW is

S dXW

dt
D

W

52E3~j!S v
dD $@Pn~gW !1Pr~gW !#Xr r̂

1@Pn~gW !1Pz~gW !#Xzẑ%, ~22!

wherePr() andPz() are functions similar toPn() @37#.
This boundary condition has proper asymptotic behav

for all degrees of anisotropy (g r→0, g r→61, gz→0, and
gz→61). Efficient, accurate routines for the evaluation
Pn , Pr , andPz are available@38#. Interestingly, the limit for
Dr→0 leads to the continuum boundary conditions of

] f 0

]r
52

2

lM
f 0 ,

] f 1r

]r
52

2

lM
f 1r ,

] f 1z

]r
52

2

lM
f 1z ,

~23!

along with the limiting forms of the absorption terms@Eqs.
~19! etc.# which will exhibit infinite absorption rates asd
5 1

2 Dr→0.
2-5
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IV. HEAVY-PARTICLE EQUATIONS

The heavy particles~neutral neon, metastable stat
3S3P2 and 3S3P0, and ion! are considered to exchange e
ergy so well among themselves and with each other that
substantially achieve a Maxwellian distribution at a comm
temperature. Equations for the conservation of mass and
mentum are solved for each species. Since heating of
neutral gas is allowed, an energy conservation equatio
solved for the neutral gas.

Beginning with the neutral gas, it must be considered t
radial flow of ions to the wall will drag neutral gas, an
cause a parasitic flow. This parasitic radial flow is count
acted by axial flow tending to reequilibrate the pressu
Without knowledge of the axial conditions, it is impossib
to specify the rate of this reequilibration. The flow is inhe
ently two dimensional, and thus requires some term to r
resent the axial flow that results from the radial flow of ne
tral gas. A heuristic approach is taken by introducing a ti
constant for pressure relaxationtz , to describe the equili-
brating effect. For large values oftz , axial flow is slow, and
a radial pressure difference will be maintained. For sm
values of tz , radial pressure is quickly equilibrated. Th
mass conservation equation for neutral gas is thus

]N

]t
1

1

r

]~rNvNr!

]r
1

]~NvNz!

]z
50, ~24!

whereN(r ) is the neutral gas~neon! concentration, andvNr
its radial velocity. The axial term is estimated as

]~NvNz!

]z
'2

N

tz
S 12

pN

p0
D , ~25!

wherepN(r ) is the local gas pressure@pN(r )5N(r )kT(r )#
andp0 is the reservoir pressure.

Momentum conservation is represented by

]~NvNr!

]t
1

1

r

]~rNvNrvNr!

]r
52

]pN

]r
1v iNni~v ri 2vNr!,

~26!

wherev ri is the radial velocity of the ion gas, andv i is a
collision rate for momentum transfer between neutral ne
and the neon ion taken from the mobility estimates@39#.

Energy conservation for the neutral gas is represented

]~NuN!

]t
1

1

r

]~rNuNvNr!

]r

5
1

r

]

]r S rk
]T

]r D2pN

1

r

]~rvNr!

]r
2ve , ~27!

whereuN(r )5 3
2 (k/e)T(r ) is the neutral thermal energy,ve

is a term representing collisional exchange of energy w
electrons,
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ve~r !5
e

m
N~r !E

0

`Fu
]

]uS vudelsel

kT

e

]h

]u D
2delselvS u2

1

2

kT

e Dh Gdu, ~28!

andk(T) is the thermal conductivity for neon@40#.
For ions, mass conservation is as follows:

]ni

]t
1

1

r

]~rniv ir !

]r
5V i , ~29!

where the ionization rateV i is determined from the electro
energy distribution as

V i5
e

m (
j

NjE
0

`

hs i , jv du, ~30!

whereNj refers to each of the ionizing species, namely, n
tral neon, 3S3P0 metastable state, and 3S3P2 metas
state.

Momentum conservation for ions is

]niv ir

]t
1

1

r

]~rniv ir
2 !

]r
5

e

M
niEr2

1

M

]pi

]r
1v iniN~vNr2v ir !,

~31!

where pi(r )5ni(r )kT(r ) is the ion pressure andEr is the
radial component of electric field,EW .

For each of the metastable excited species, the trans
equations are similar to those of the ions, but without
electric force term in the momentum equations.

Boundary conditions for the ions and metastable states
taken to be the obvious symmetry conditions at the a
(ni@0#5ni@1#; v ir @0#52v ir @1#) and perfectly absorbing a
the wall. The absorbing-wall condition is derived from th
same argument that led to the absorbing-wall conditions
electrons, but for the heavy-particle consideration is ma
for the assumed Maxwellian distribution function. The res
is a set of conditions for the ions that are similar to those
electrons, with an absorption term and a projected bound
condition. Details of this derivation can be found elsewhe
@37#.

V. FIELD EQUATIONS

Poisson’s equation can also be written in time-depend
form. The need for such a form comes from the tendency
a static representation of Poisson’s equation to exhibit
merical instability in a time-dependent simulation due to t
infinitely fast propagation of roundoff error that creates
violation of the Courant stability criterion.

A fictitious electric field ‘‘velocity’’ VE(r ), is used to mul-
tiply Poisson’s equation (¹W •EW 5rc /eo):

¹W •~EW VE!5
1

eo
rcVE1EW •¹W VE , ~32!
2-6
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which, when added to the magnetostatic form of Amper
law @(]EW /]t)1(1/eo)JW50#, gives another dynamic equatio
for Er . In cylindrical coordinates with axial uniformity, thi
is

]Er

]t
1

1

r

]~rErVE!

]r
5

e

eo
~Ger2niv i !1Er

]VE

]r

1
1

eo
~niqi2ene!VE , ~33!

whereGer is the radial electron flux. Equation~33! is a con-
vective flow equation, with some unusual source terms.VE
can take on many possible forms. It has been found th
very simple form works well:

VE~r !5Vx

r 2

R2
, ~34!

where the constantVx is chosen for accuracy. The choic
should be small enough to ensure that Eq.~33! does not limit
the time step~via the Courant condition! of the simulation,
while at the same time guaranteeing that the static Poiss
equation is well represented in, and does not disappear
the roundoff error of, the dynamic equation. A value ofVx
chosen to be the about 1% of the electron speed of the m
mum electron energy has been found to work well. It c
also be shown~see details in Ref.@41#! that the system of
equations is dynamically stable only forVx.0.

Finally, the axial field is calculated by inserting the di
charge into a circuit with a current source of magnitudeI o
and a parallel capacitanceCl , chosen to be so sufficientl
small that it does not dominate the rate of relaxation
steady state, nor allow a relaxation oscillation to occur
value of 300 pF m is used in these simulations in neon. T
technique eliminates the difficulty of enforcing a consta
condition on the axial current. Instead, the axial curren
calculated from

FIG. 1. Average electron energy and radial potential as a fu
tion of radial position for 10-mA and 100-mA steady-state curre
at R51 cm in neon at 1 Torr.
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0

`

Xzhv du r dr,

~35!

and the axial field is determined from the time-depend
equation

dEz

dt
5

1

Cl
~ I o2I !. ~36!

VI. RESULTS

The complete set of time-dependent equations for e
tron, ion, metastable, and neutral species, along with b
radial and axial electric field have been solved numerica
for a particular sequence of conditions. A grid is chosen w
50 uniformly spaced cells in radial position, and 100 nonu
formly ~higher density at lower values! spaced cells in ki-
netic energy. Beginning with some arbitrary initial conditio
~chosen as a Maxwellian distribution for electrons in th
case! the computation proceeds withI o5100 mA until
steady state is reached. A change is then made toI o
510 mA and computation proceeds until steady state
again reached. The steady-state results are then rema

c-
s

FIG. 2. Radial electron energy flux as a function of radial po
tion for 10-mA and 100-mA steady-state currents atR51 cm in
neon at 1 Torr.

FIG. 3. Radial neutral gas temperature profiles at two value
steady-state current. Although the complete thermal steady state
not been completely reached for either case, there is clearly a
ferent trend caused by parasitic flow at the higher current.
2-7
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EDWARD A. RICHLEY PHYSICAL REVIEW E66, 026402 ~2002!
onto a grid with 100 radial cells and 200 energy cells and
for 1 msec to get higher resolution and to test the truncat
error.

The entire distribution function is available for all of the
conditions, although it is often most convenient to plot on
certain derived moments of these. For example, Fig. 1 sh
the average electron energy as a function of radial posi
for both steady-state values of current.

Another important moment quantity is the radial heat fl
j ue , defined as

j ue~r !5E
0

`

u f~r ,u!v r d3v5
e

mE
0

`

uXrhv du ~37!

and shown in Fig. 2. It is clear that the significant negat
excursion of this quantity, as first described for an ener
resolved kinetic description by Uhrlandt and Winkler@4#
~and later confirmed by others@1,15#! is also found by the
present techniques.

One interesting aspect of the present simulation is
description of neutral gas heating. The model descri
above relies on an axial relaxation parametertz to determine
the degree of pressure equilibration allowed in respons
the parasitic radial gas flow caused by radial ion flow. For
chosentz of 100 ns, the effects on heavy-particle tempe
ture is shown in Fig. 3. While it could be argued that t
thermal time constant of the system is somewhat longer t
the 100–150ms of the simulation time, and that true stea
state is not yet established, there is clearly a different tr
for the two current levels. At the higher current, the paras
flow is such that convection cools the central regions~subject
to the model assumptions!, while carrying heat and compres
sively heating the outer regions. At the lower current,
parasitic flow is much lower, and a more conventional pro
is obtained.

FIG. 4. Radial anisotropy as a function of energy and positi
at 10 mA. The natural boundary of trapped electrons is clea
visible, which mirrors the potential profile.
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The radial anisotropyXr for the 10-mA steady state i
shown in Fig. 4. From this it is clear that there is very lo
anisotropy within the artificial boundary of ‘‘trapped’’ elec
trons defined by the potential profile as shown in Fig.
These electrons lack sufficient energy to escape, and
spend a lot of time in this region suffering many direction
changes due to collisions and electric forces. Those that m
age to be taken above this boundary appear to take o
chaotic behavior at the higher energies. Upon closer exa
nation on a short ('1ns) time scale, it becomes clear th
there are waves and oscillations taking electrons out to
walls in a very dynamic process, and that steady state ap
ently does not strictly exist. Due to the nonlinear nature
the set of coupled equations, the presence of such uns
behavior can be important since the resulting solution w
have different mean values than would a corresponding
lution to the time-averaged steady-state equations. The a
ity to examine these unstable effects is a significant adv
tage of the time-dependent approach.

Complete sets of data for these conditions are availabl
tabular form elsewhere@42#.

There is generally a lack of published measurements
can be used for verification of these results. The quantity
can be measured most easily is the axial electric fieldEz . At
a pressure of 1 Torr and a radius of 1 cm, there are
published measurements, most are quite old, and results
varying @43–45#. For the present work, axial field measur
ments were made using commonly available laborat
equipment, by means of two independent techniques.
technique utilizes short pulses of direct current, while t
other utilizes a superimposed high-frequency signal. Det
are given in Ref.@46#. The measurements are performed
custom-made neon tubes obtained from a speciality ligh
shop@47#, made of standardT-25 tubing, and containing cold
cathodes of the type typically found in the neon sign ind
try. Comparison of calculated field with these various me

,
y

FIG. 5. Transient response of axial field~calculated! and termi-
nal voltage~measured! to step change in current.
TABLE I. Axial field calculations~in units of V/m! compared with various measurements.

Calculated dc@46# ac @46# Kaganet al. @45# Lompe and co-workers@43,44#

10 mA 300 393 467 200
100 mA 266 349 303 170 244
2-8
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ANALYSIS OF THE LOW-PRESSURE LOW-CURRENT dc . . . PHYSICAL REVIEW E 66, 026402 ~2002!
surements is shown in Table I. The calculated results ar
reasonable agreement with experimental results that th
selves vary over quite a large range.

The transient response of the terminal voltage for a s
change in current from 100 mA to 10 mA is shown in Fig.
It is clear that the initial response~on a time scale of a few
ms! to the step is largely ohmic, and that quite some time
needed in order to reestablish the ionization balance. In
subsequent steady state~several hundredms later!, after ion-
ization balance has been reestablished, the nonohmic res
such that the voltage at the lower current is somewhat hig
than that at the higher current. The figure also shows
calculated values of axial field for the transient connect
the two steady states. From this comparison it can be s
that the calculated transient response of the positive colu
generally resembles the measured response of terminal
age, although with a somewhat faster recovery. Since
terminal voltage measurement includes all transient effe
associated with anode and cathode processes, as well
axial effects that are only crudely approximated in the mod
the agreement is reasonable.

VII. DISCUSSION

Due to the large disparity in relevant time scales, simu
tions using the described techniques are very time cons
ing. Typically, complete runs take 6–8 months of CPU tim
on a reasonably fast work station~533-MHz Alpha!. Faster
machines now available will reduce this time by a factor
3–6, and another similar factor could be obtained by sim
ignoring neutral gas heating with its long time constant a
relatively minor contribution. However, the use of the
methods is generally restricted to special test cases for w
detailed information about all of the included physical e
fects, as well as their dynamic behavior, is needed.

The dynamic equations, together with the self-consist
boundary conditions, form anab initio description of the
positive column, constrained only by the assumptions
axial symmetry and axial uniformity. The only input to th
model is kinetic ~collisional! data, host gas pressure, a
axial current. Since the model is not cast as an eigenv
problem, there are no extraneous parameters to be adjust

FIG. 6. Radial electron flux near the wall as a function of tim
for ‘‘steady-state’’ results at 100 mA. An instability is found with
time scale of 1 ns.
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order to obtain ionization balance.
The unstable fluctuations discussed in the preceding

tion are particularly strong near the wall where electrons
counter a repulsive sheath. Figure 6 shows the radial elec
flux on a short time scale after the steady state of 100 mA
been reached. This figure clearly shows erratic fluctuation
flux, which are large, confined to the region near the w
very fast, and hence, do not appear in other quantities suc
the computed axial field. In light of the fact that the comp
tational time step for these computations is of the order o
ps, while the oscillation period is around 1 ns, and that
oscillation persists at different grid spacing and time steps
is not likely that this effect is a numerical artifact.

To analyze this situation, it is possible to perform a line
stability analysis of the equations describing the electron
near the wall by making some simplifying assumptions. T
complete Boltzmann equation, or even the elliptic repres
tation of it, is too unwieldy to provide a concise result. F
the purposes of this stability analysis, the traditional a
proach of assuming a Maxwellian distribution for the ele
trons will be taken. The only quantities that are allowed
change on the short time scale of interest are electron c
centrationne , radial electron fluxGer , electron temperature
Te , and radial electric fieldEr . The short time scale dynam
ics is described by the following set of equations:

]ne

]t
1

]Ger

]x
50, ~38!

]Ger

]t
1

]Gerve

]x
52

e

m
neEr2

kTe

m

]ne

]x
2nMGer , ~39!

ne

] 3
2 kTe

]t
1ne

] 3
2 kTeve

]x
5nek

]2Te

]x2
2ve2nekTe

]ve

]x

2eGerEr , ~40!

]Er

]x
5

e

eo
~ni2ne!, ~41!

where ionization is considered to be too slow for a proces
have an effect on the time scale of interest. Thermal cond
tivity k is estimated~see Raizer@39#! as

k

k
5

5
2 kTe

nMm
, ~42!

and a constant cross section of 1.9310220 m2 is assumed
for determination of the collision frequencynM . Lineariza-
tion of these equation, and the introduction of perturbat
quantities (ñe ,G̃er ,T̃e ,Ẽr) leads to the following eigenvalue
problem:

añe1 j bG̃er50, ~43!

aG̃er1
e

m
neẼr1

e

m
Erñe1 j b

kTe

m
ñe1nMG̃er50, ~44!
2-9
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anekT̃e1 j b
5

2
~ G̃er2veñe!1 j bve

3

2
nekT̃e1

k

k
b2knekT̃e

1eGerẼr1eEr G̃er50, ~45!

j bẼr52
e

m
ñe , ~46!

wherea is the ~complex! temporal growth parameter andb
is the ~real! spatial wave number of the perturbation wi
wavelengthl (b52p/l). For conditions found near th
wall, as determined by the results of the detailed compu
tion, the eigenvalues of this system are found by Schur
composition@48#. The result of this analysis for a wide rang
of wavelengths and radial fields is shown in Fig. 7. Clea
for sufficiently short wavelengths, there are eigenvalues w
positive real part, indicating physical instability. Furthe
more, the imaginary part of those eigenvalues indicate
the temporal frequencies of the resulting unstable modes
of the order of 109s21. This result is quite comparable wit
the time scale found by the detailed time-dependent calc

FIG. 7. Results of eigenvalue analysis of a simplified short ti
scale stability model. The real part of the eigenvalue, Re(a), is
shown as a function of wavelength. Instability is indicated by po
tive values of Re(a). The associated oscillatory frequency for th
unstable portions, found from the imaginary part ofa ~not shown!,
is of the order of 13109 s21.

FIG. 8. Computed results of radial ion flux at several points
time for I 5100 mA. The long-wavelength, low-frequency oscill
tion nearr 50.5 cm is apparent.
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tion of the present work~see Fig. 6!, suggesting that the
instability is not an artifact of the solution, but a feature
the transport equations and, hence, has a physical basis

A fluctuation also appears in the ion flux, as shown in F
8 for several disparate points in time near the steady sta
100 mA. No attempt has been made here to analyze
stability of this region on the appropriate time scale, ho
ever, its location appears to coincide with the region in wh
the radial ion velocity crosses through the ion sonic spe
When an average is taken over severalms in order to filter
that fluctuation, the ion velocity profile shown in Fig. 9
obtained. This figure confirms the analytical result of Ingo
@14# in which the ion velocity crosses the ion sound speed
roughly the same point as the ion mobility speed~defined as
m iEr) also crosses the sonic speed. In fact, from the pre
result, it would appear that the ion velocity is nearly identic
to the mobility speed everywhere except near the wall, a
that the ion pressure term can, for all practical purposes
neglected, despite the inclusion of a finite ion temperatur

Due to the high degree of stiffness in this system,
radial fluxes, derived from moments off 1r ~or Xr), exhibit a
much greater sensitivity to small fluctuations in conditio
than do the quantities derived from moments off 0 ~or h).
Figure 10 shows electron and ion concentration profiles
currents of both 10mA and 100mA, from which it is see

e

-

FIG. 9. Computed results of radial ion velocity shown alo
with local sonic speedVs5AkT(r )/M and mobility limited speed
Vm5m iEr for I 5100 mA.

FIG. 10. Computed charged particle concentration profiles
both steady-state currents of 10mA and 100mA. Also shown
measurements of Kaganet al. @45#.
2-10
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that the profiles are quite smooth, and that quasineutra
holds nearly everywhere, except at the wall. The fluctuati
in radial fluxes are evidently small enough and fast eno
to not disrupt these quantities. These results compare
favorably with the measurements of Kaganet al. @45#.

Although these computational techniques are applicabl
higher pressures as well, the presented results pertain to
sures such that nonlocal conditions exist. Nonlocal effe
@16# tend to causef 0 to be nearly a function of total energ
~kinetic plus potential!. This trend is somewhat confirmed b
Fig. 11, in which the isotropic component of the EVDF
shown at various radii. Each curve is roughly the same as
on-axis curve, shifted in energy by the local potentialf(r ).
Trapped on-axis electrons have energies below the wall
tential of 27 V. The excitation processes with energies
about 16.6 eV have a marked effect onf 0, and cause a pre
cipitous decline above that energy. The off-axis curves t
mirror this decline, although without a corresponding decl
in the actual excitation energy. Thus, off axis, the axial fie
serves to replenish these artificially depleted energies, s
that a repletion of tail electrons exists over and above w
would exist had the on-axis distribution simply shifted a
cording to the local potential. Due to this ‘‘inversion,’’ ta
electrons can then return to the axis along a different, hig
total energy path than what brought them outward. This
fect has already been evidenced by the presence of a neg
heat flux~Fig. 2!, while the particle flux~a lower moment,

FIG. 11. Isotropic component of EVDF, 4p f 0(r ,u), at
100 mA, at selected radii. Symbols (L,h,3,n) indicate the
value off(r )2fW corresponding to the boundary between trapp
and untrapped electrons at that radius. Also shown is the z
dimensional solution for on-axis conditions.

FIG. 12. Computed radial component of EVD
(4p/3)v2f 1r(u,r ), at 100 mA.
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shown in Fig. 9! remains positive.f 1r clearly must swing
from positive at low energies to negative at higher energ
in order to give that result. Figure 12 shows this bimod
characteristic at 100 mA. Trapped electrons are, in gene
flowing in a loop in phase space in which they move outwa
at lower energies, upward in energy as their radial mot
slows, and inward at higher energies. The axial field a
energy to the low-energy electrons so as to maintain th
ascent up the space charge potential and, at some poin
move these to higher energies where their net motion will
inward. There is a significant energy change along this lo
bringing into question the assertion often made@17,18# that
total energy is a ‘‘constant of the motion’’ of these trapp
electrons.

With such a concern, it remains to be determined justhow
nearly a function of total energyf 0 is, and what use can b
made of this property. When applied to the present cylind
cal geometry, the original work of Bernstein and Holste
@18# would lead to takingf 1r50, for a first approximation,
according to the two-term expansion relation

f 1r52lMS ] f 0

]r
2Er

] f 0

]u D , ~47!

when f 05 f 0@u2f(r )#. Neglect off 1r in the next relation of
the spherical harmonic expansion

u

3

1

r

]~r f 1r !

]r
2

]

]u S 1

3
u~Er f 1r1Ezf 1z!2delu

2
1

lM
f 0D5Sinel

~48!

leads directly to the integration described, for example,
Eq. ~40! of Ref. @18# as a first approximation forf 0.

Equation~48! can be viewed as the divergence of flux
of a flow in phase space. However, under nonlocal con
tions, the elastic collision term of Eq.~48! is relatively small
and, considering circulation in phase space described ab
it is clear that neglect off 1r in Eq. ~48! is tantamount to
neglect of a quantity comparable to those retained. It is
actly the conservation in phase space, as described by
~48!, which determines that the contribution off 1r is not
negligible. Although its magnitude will be much smaller tha
f 1z , its extra weighting byEr makes its contribution signifi-
cant. Furthermore, both the weighting~by Er) and the mag-
nitude of f 1r in comparison with increasingf 1z increase with
radius, so that the relative contribution of these neglec
terms grows with radial position.

In order to show the effects of nonlocality, the curve
Fig. 11 labeled ‘‘0D’’ is shown, which is the result of
zero-dimensional Boltzmann solution for the conditio
present on axis (Ez5266 V/m, N52.4131022 m23,
n3s3P051.7531017 m23, n3s3P256.231017 m23). A
much greater depletion of the energies above threshol
found than in the corresponding complete solution. Eviden
the inflow of electrons into this region from radial position
with higher potential energy is very significant.

Accordingly, the first approximation of the nonlocal ele
tron kinetic approach analyzed in Sec. II is equivalent
solving a similar ~albeit, spatially averaged! zero-

d
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dimensional Boltzmann equation for the on-axis conditio
and then translating this solution to other positions by sh
ing the energy axis according to the local potential. That
surplus of electrons above the ‘‘translated’’ threshold gro
with radius, as evidenced by the inward radial heat flux
further indication that the NEK approximation becom
worse with increasing radius. Uhrlandt and Winkler@4#
reached a similar conclusion, and also indicate that the
sumed strict dependence off 0 on total energy also leads
even without spatial averaging, to the neglect of a radial fl
term. In fact, in somewhat a self-contradictory manner,
NEK method@see, for example, Ref. 5 Eq.~7! using Eq.~18!
at r 50, compared with Eq.~19!# could also be solved on
axis to yield exactly a zero-dimensional solution. Althou
the concept off 0 as nearly a function of total energy
perhaps useful for qualitative analysis, the NEK method
ogy for determiningf 0 does not properly describe the circ
lation of electrons in phase space, and hence does not
rectly represent the physics of energy flow and electron re
in the column.

Quantitatively, the detailed computation finds a value
the ratiou f 1z / f 0u of about 0.06 near the axis at low energie
The ratio (f 1r / f 0) changes with radius, and grows to a ma
mum roughly where the subexcitation on-axis electro
reach their~radial! turning point, nearr 58 mm. There,
( f 1r / f 0)'0.006, which, although smaller thanu f 1z / f 0u, is
not negligible when each is weighted by their respective fi
components (Er@Ez at r 58 mm).

In the nonlocal regime, the energy balance is establis
via the radial circulation effect described above and even
ally culminates in inelastic events near the axis. For t
reason, a simple estimate for the ratiou f 1z / f 0u in terms of
fundamental quantities in the nonlocal regime is not obvio
In contrast, energy loss in the local regime is dominated
elastic collisions, leading to the familiar estimate
u f 1z / f 0u'Adel @49#.
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VIII. SUMMARY

A time-dependent, nonstatistical, first-principles descr
tion of the dc positive column at low pressure has been p
sented, analyzed, and compared with both static and dyna
measurements of axial electric field in low-pressure neon
der nonlocal conditions. The very versatile technique
generating these continuum solutions is equally applicabl
higher pressures. The elliptic representation of the Bo
mann equation has been reformulated in a manner that
numerical advantages. A self-consistent absorbing-w
boundary condition for the continuum equations has b
devised, implemented, and described in detail. A tim
dependent form of Poisson’s equation has been derived
implemented. In addition to a detailed static picture of t
state of the discharge, a dynamic description is also ge
ated. The temporal evolution of the positive column is th
quantitatively described as it responds to changes in co
tions, or as those conditions potentially lead to physical
stability. The technique should lend itself to such situatio
as afterglows in which time-dependent solutions are nec
sary.

Under nonlocal conditions, the utility of the concept
the EVDF being nearly a function of total energy is seen
be quite valid for its isotropic component, but to be of litt
utility in actually determining that EVDF. In agreement wit
Uhrlandt and Winkler@50#, the present work indicates tha
the problem remains the one for which a detailed compu
tion is required.
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